David Broneske

Dr. David Broneske

Research Area Research Infrastructure and Methods
Acting Head of Department
  • +49 511 450670-454
  • Google Scholar
  • Orcid

Dr. David Broneske did his Bachelor and Master in Computer Science at the Otto-von-Guericke University Magdeburg, where he received his Ph.D. in 2019 and afterward started his Habilitation. From 2019 to 2020, he was the substitutional head of the chair of Database and Informationssystems at Hochschule Anhalt in Köthen. Since March 2021, he is the acting head of Department 4 "Infrastructures and Methods" of the German Centre for Higher Education Research and Science Studies (DZHW).

Read more Read less

Academic research fields

Research Data Management for Learning Analytics Data, Main-Memory Database Systems on Modern Hardware, Interactive Data Exploration and Visualization, Artificial Intelligence for Data Cleaning and Analysis

Projects

List of projects

Unfortunately, there is no result available for this search combination
The Appointment of Professors at Private and State Universities of Applied Sciences
Research cluster: Open Science
Publications

List of publications

Unfortunately, there is no result available for this search combination

Embracing NVM: Optimizing $B^𝜖$-tree structures and data compression in storage engines.

Karim, S., Wünsche, F., Broneske, D., Kuhn, M., & Saake, G. (2025).
Embracing NVM: Optimizing $B^𝜖$-tree structures and data compression in storage engines. In Binnig, C. et al. (Hrsg.), Datenbanksysteme für Business, Technologie und Web - Workshopband (BTW 2025) (S. 329-333). Bonn: Gesellschaft für Informatik. https://doi.org/10.18420/BTW2025-137

A multi-objective evolutionary algorithm for detecting protein complexes in PPI networks using gene ontology.

Abbas, M. N., Broneske, D., & Saake, G. (2025).
A multi-objective evolutionary algorithm for detecting protein complexes in PPI networks using gene ontology. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-01667-y

AutoML meets hugging face: Domain-aware pretrained model selection for text classification.

Safikhani, P., & Broneske, D. (2025).
AutoML meets hugging face: Domain-aware pretrained model selection for text classification. In A. Ebrahimi, S. Haider, E. Liu, M. L. Pacheco, & S. Wein (Hrsg.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop). Albuquerque, USA: Association for Computational Linguistics.
Abstract

The effectiveness of embedding methods is crucial for optimizing text classification performance in Automated Machine Learning (AutoML). However, selecting the most suitable pre-trained model for a given task remains challenging. This study introduces the Corpus-Driven Domain Mapping (CDDM) pipeline, which utilizes a domain-annotated corpus of pre-fine-tuned models from the Hugging Face Model Hub to improve model selection. Integrating these models into AutoML systems significantly boosts classification performance across multiple datasets compared to baseline methods. Despite some domain recognition inaccuracies, results demonstrate CDDM’s potential to enhance model selection, streamline AutoML workflows, and reduce computational costs.

VerbCraft: Morphologically-aware Armenian text generation using LLMs in low-resource settings.

Avetisyan, H., & Broneske, D. (2025).
VerbCraft: Morphologically-aware Armenian text generation using LLMs in low-resource settings. In ¦. A. Holdt, N. Ilinykh, B. Scalvini, M. Bruton, I. N. Debess, & C. M. Tudor (Hrsg.), Proceedings of the Third Workshop on Resources and Representations for Under-Resourced Languages and Domains (RESOURCEFUL-2025) (S. 111-119). Tallinn: University of Tartu Library, Estonia.

Tell me more! Using multiple features for binary text classification with a zero-shot model.

Broneske, D., Italiya, N., & Mierisch, F. (2025).
Tell me more! Using multiple features for binary text classification with a zero-shot model. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), 2024 International Conference on Machine Learning and Applications (ICMLA) (S. 1613-1620). Jacksonville, Florida, USA: IEEE Xplore. https://doi.org/10.1109/ICMLA61862.2024.00249

ADAMANT: Hardware-accelerated query processing made easy.

Broneske, D., Burtsev, V., Drewes, A., Gurumurthy, B., Pionteck, T., & Saake, G. (2025).
ADAMANT: Hardware-accelerated query processing made easy. In K.-U. Sattler, A. Kemper, T. Neumann, & J. Teubner (Hrsg.), Scalable Data Management for Future Hardware (S. 1-38). Cham: Springer. https://doi.org/10.1007/978-3-031-74097-8

Bots in web survey interviews: A showcase.

Höhne, J. K., Claaßen, J., Shahania, S., & Broneske, D. (2025).
Bots in web survey interviews: A showcase. International Journal of Market Research, 67(1), 3-12. https://doi.org/10.1177/14707853241297009

A mediation strategy for communication between an internal chat system and an open source chat system.

Obionwu, C. V., Kanagaraj, R. R., Kalu, K. O., Broneske, D., Buch, A., Knopke, C., & Saake, G. (2024).
A mediation strategy for communication between an internal chat system and an open source chat system. In Jon-Chao, H. (Hrsg.), New Technology in Education and Training, Select Proceedings of the 5th International Conference on Advance in Education and Information Technology (AEIT 2024) (S. 73-86). Singapore: Springer. https://doi.org/10.1007/978-981-97-3883-0_7

Exploring the predictive factors of heart disease using rare association rule mining.

Darrab, S., Broneske, D., & Saake, G. (2024).
Exploring the predictive factors of heart disease using rare association rule mining. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-69071-6
Abstract

Cardiovascular diseases continue to be the leading cause of mortality worldwide, claiming a significant number of lives each year. Despite the advancements in predictive models, including logistic regression, neural networks, and random forests, these techniques often lack transparency and interpretability, limiting their practical application in clinical settings. To address this challenge, this research introduces EPFHD-RARMING, an innovative approach designed to enhance the understanding and predictability of heart disease through the discovery of rare and meaningful patterns. EPFHD-RARMING utilizes rare association rule mining to [...] Full Abstract: https://www.nature.com/articles/s41598-024-69071-6#citeas

Expert agent guided learning with transformers and knowledge graphs.

Obionwu, C. V., Chovatta Valappil, B. B., Genty, M., Jomy, M., Padmanabhan, V., ... & Saake, G. (2024).
Expert agent guided learning with transformers and knowledge graphs. In SciTePress Science and Technology Publications (Hrsg.), Proceedings of the 13th International Conference on Data Science, Technology and Applications (DATA 2024) (S. 180-189). Setúbal, Portugal: Science and Technology Publications.

Sharing software-evolution datasets: Practices, challenges, and recommendations.

Broneske, D., Kittan, S., & Krüger, J. (2024).
Sharing software-evolution datasets: Practices, challenges, and recommendations. In Association for Computing Machinery (Hrsg.), Proceedings of the ACM on Software Engineering (S. 2051-2074). New York, NY, United States: ACM. https://doi.org/10.1145/3660798

Exploiting shared sub-expression and materialized view reuse for multi-query optimization.

Gurumurthy, B., Bidarkar, V. R., Broneske, D., Pionteck, T., & Saake, G. (2024).
Exploiting shared sub-expression and materialized view reuse for multi-query optimization. Information Systems Frontiers, A Journal of Research and Innovation. https://doi.org/10.1007/s10796-024-10506-w

A design proposal for a unified B-epsilon-tree: Embracing NVM in memory hierarchies.

Karim, S., Wünsche, J., Broneske, D., Kuhn, M., & Saake, G. (2024).
A design proposal for a unified B-epsilon-tree: Embracing NVM in memory hierarchies. In Störl, U. (Hrsg.), GvDB 2024, Grundlagen von Datenbanken 2024, Proceedings of the 35th GI-Workshop Grundlagen von Datenbanken (Herdecke, Germany, May 22-24, 2024) (S. 43-50). Hagen: Fernuniversität Hagen, Databases and Information Systems.

A case study on the development of the German Corona-Warn-App.

Fawaz Enaya, M., Klingbeil, T., Krüger, J., Broneske, D., Feinbube, F., & Saake, G. (2024).
A case study on the development of the German Corona-Warn-App. Journal of Systems and Software. https://doi.org/10.1016/j.jss.2024.112020

A domain specific students' assistance system for the provision of instructional feedback.

Obionwu, C. V., Tiwari, T., Chovatta Valappil, B. B., Raikar, N., Walia, D. S., ... & Saake, G. (2024).
A domain specific students' assistance system for the provision of instructional feedback. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), 2023 International Conference on Machine Learning and Applications (ICMLA) (S. 2065-2070). Jacksonville, Florida, USA: IEEE. https://doi.org/10.1109/ICMLA58977.2023.00312
Presentations

List of presentations & conferences

Unfortunately, there is no result available for this search combination

AutoML meets hugging face: Domain-aware pretrained model selection for text classification.

Safikhani, P. (2025, April/Mai).
AutoML meets hugging face: Domain-aware pretrained model selection for text classification. Poster auf der Konferenz 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies, Albuquerque, USA.
Abstract

The effectiveness of embedding methods is crucial for optimizing text classification performance in Automated Machine Learning (AutoML). However, selecting the most suitable pre-trained model for a given task remains challenging. This study introduces the Corpus-Driven Domain Mapping (CDDM) pipeline, which utilizes a domain-annotated corpus of pre-fine-tuned models from the Hugging Face Model Hub to improve model selection. Integrating these models into AutoML systems significantly boosts classification performance across multiple datasets compared to baseline methods. Despite some domain recognition inaccuracies, results demonstrate CDDM’s potential to enhance model selection, streamline AutoML workflows, and reduce computational costs.

Bots in web survey interviews: A showcase.

Höhne, J. K., Claaßen, J., Shahania, S., & Broneske, D. (2025, März/April).
Bots in web survey interviews: A showcase. Vortrag im Rahmen der General Online Research (GOR) Conference, Berlin.

Static and dynamic contextual embedding for AutoML in text classification tasks.

Safikhani, P. (2025, März).
Static and dynamic contextual embedding for AutoML in text classification tasks. Vortrag auf der Konferenz International Conference on Natural Language Processing (ICNLP 2025), Guangzhou, China.

Enhancing AutoML for NLP: Context-aware hyperparameter tuning and text representation using large language models.

Safikhani, P. (2025, Februar).
Enhancing AutoML for NLP: Context-aware hyperparameter tuning and text representation using large language models. Vortrag auf dem Kolloquium Doktorandentag at Otto von Guericke University Magdeburg, Faculty of Computer Science, Magdeburg, Germany.

Tell me more! Using multiple features for binary text classification with a Zero-Shot model.

Broneske, D., Italya, N., & Mierisch, F. (2024, Dezember).
Tell me more! Using multiple features for binary text classification with a Zero-Shot model. Vortrag auf der Konferenz 23rd International Conference on Machine Learning and Applications (ICMLA 2024), Miami, Florida, USA.

Bots in web survey interviews: A showcase.

Höhne, J. K., Claaßen, J., Shahania, S., & Broneske, D. (2024, November).
Bots in web survey interviews: A showcase. Vortrag im Rahmen der GESIS Seminar Series, Mannheim.

A common Storage engine for modern Memory and Storage Hierarchies (SMASH).

Karim, S., Wünsche, J., Kuhn, M., Broneske, D., & Saake, G. (2024, September).
A common Storage engine for modern Memory and Storage Hierarchies (SMASH). Vortrag im Rahmen des SPP 2377 Annual Meeting 2024, Universität Osnabrück.

BMBF-Datenportal 3.0 - Präsentation des Konzepts zur Weiterentwicklung (2024-2027).

Grützmacher, J. (2024, August).
BMBF-Datenportal 3.0 - Präsentation des Konzepts zur Weiterentwicklung (2024-2027). Vortrag im Rahmen des BMBF Arbeitstreffen, BMBF - Referat 123, Berlin, Deutschland.

Expert agent guided learning with transformers and knowledge graphs.

Obionwu, C. V., Chovatta Valappil, B. B., Genty, M., Jomy, M., Padmanabhan, V., ... & Saake, G. (2024, Juli).
Expert agent guided learning with transformers and knowledge graphs. Vortrag auf der Konferenz 13th International Conference on Data Science, Technology and Applications (DATA 2024), Dijon, Frankreich.

Bot behavior in web surveys: A showcase.

Shahania, S., Claaßen, J., Höhne, J. K., & Broneske, D. (2024, Juni).
Bot behavior in web surveys: A showcase. Vortrag auf der Konferenz Data collection, data quality and data ethics in the age of artificial intelligence, Wiesbaden.

Mitigating the risk of bots in web surveys recruited via social media.

Shahania, S., Claaßen, J., Höhne, J. K., & Broneske, D. (2024, März).
Mitigating the risk of bots in web surveys recruited via social media. Vortrag im Department of Methodology and Statistics, Utrecht University (The Netherlands), Utrecht.

How to incorporate AI interviewers in contemporary web surveys?

Höhne, J. K., Broneske, D., Neuert, C., & Claaßen, J. (2024, Januar).
How to incorporate AI interviewers in contemporary web surveys? Vortrag im Rahmen des Events 'Going online: using video interviewing in survey research', The Royal Statistical Society, London, UK.

A mediation strategy for communication between an internal chat system and an open source chat system.

Obionwu, C. V., Kanagaraj, R. R., Oji Kalu, K., Broneske, D., Buch, A., Knopke, C., & Saake, G. (2024, Januar).
A mediation strategy for communication between an internal chat system and an open source chat system. Vortrag auf der Konferenz 5th International Conference on Advances in Education and Information Technology (AEIT 2024), Nagoya, Japan.

Laughing out loud – Exploring AI-generated and human-generated humor.

Avetisyan, H., Safikhani, P., & Broneske, D. (2023, Dezember).
Laughing out loud – Exploring AI-generated and human-generated humor. Vortrag auf der Konferenz International Conference on NLP & Artificial Intelligence Techniques (NLAI 2023), Computer Science & Information Technology (CS & IT), Sydney, Australia.

Anomaly detection algorithms: Comparative analysis and explainability perspectives.

Darab, S., Allipilli, H., Ghani, S., Changaramkulath, H., Koneru, S., Broneske, D., & Saake, G. (2023, Dezember).
Anomaly detection algorithms: Comparative analysis and explainability perspectives. Vortrag auf der Konferenz The 21st Australasian Data Science and Machine Learning Conference (AUSDM23), Auckland, New Zealand.
Curriculum Vitae
Since 03/2021

Acting Head of Department 4 "Infrastructures and Methods" of the German Centre for Higher Education Research and Science Studies (DZHW)

04/2020 - 02/2021

Post-Doc at Otto-von-Guericke University Magdeburg

10/2019 - 03/2020

Substitutional Professor at Hochschule Anhalt - Chair of Database and Information Systems

06/2019 - 09/2019

Post-Doc at Otto-von-Guericke University Magdeburg

08/2013 - 05/2019

PhD Student at Otto-von-Guericke University Magdeburg

2008 - 2013

Bachelor and Master Studies in "Computer Science", Otto-von-Guericke University Magdeburg

Read more Read less