David Broneske

Dr. David Broneske

Research Area Research Infrastructure and Methods
Acting Head of Department
  • +49 511 450670-454
  • Google Scholar
  • Orcid

Dr. David Broneske did his Bachelor and Master in Computer Science at the Otto-von-Guericke University Magdeburg, where he received his Ph.D. in 2019 and afterward started his Habilitation. From 2019 to 2020, he was the substitutional head of the chair of Database and Informationssystems at Hochschule Anhalt in Köthen. Since March 2021, he is the acting head of Department 4 "Infrastructures and Methods" of the German Centre for Higher Education Research and Science Studies (DZHW).

Read more Read less

Academic research fields

Research Data Management for Learning Analytics Data, Main-Memory Database Systems on Modern Hardware, Interactive Data Exploration and Visualization, Artificial Intelligence for Data Cleaning and Analysis

Projects

List of projects

Unfortunately, there is no result available for this search combination
Research cluster: Open Science
Publications

List of publications

Unfortunately, there is no result available for this search combination

A flexible and scalable reconfigurable FPGA overlay architecture for data-flow processing.

Drewes, A., Burtsev, V., Gurumurthy, B., Wilhelm, M., Broneske, D., Saake, G., & Pionteck, T. (2023).
A flexible and scalable reconfigurable FPGA overlay architecture for data-flow processing. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) (S. 212-212). Marina Del Rey, CA, USA: IEEE. https://doi.org/10.1109/FCCM57271.2023.00040

Intelligent data migration policies in a write-optimized copy-on-write tiered storage stack.

Wünsche, J., Karim, S., Kuhn, M., Broneske, D., & Saake, G. (2023).
Intelligent data migration policies in a write-optimized copy-on-write tiered storage stack. In Association for Computing Machinery (Hrsg.), CHEOPS '23: Proceedings of the 3rd Workshop on Challenges and Opportunities of Efficient and Performant Storage Systems. Rom, Italien: ACM. https://doi.org/10.1145/3578353.3589543

Leveraging educational blogging to assess the impact of collaboration on knowledge creation.

Obionwu, V., Broneske, D., & Saake, G. (2023).
Leveraging educational blogging to assess the impact of collaboration on knowledge creation. International Journal of Information and Education Technology. https://doi.org/10.18178/ijiet.2023.13.5.1868

Novel insights on atomic synchronization for sort-based group-by on GPUs.

Gurumurthy, B., Broneske, D., Schäler, M., Pionteck, T., & Saake, G. (2023).
Novel insights on atomic synchronization for sort-based group-by on GPUs. Distributed and Parallel Databases. https://doi.org/10.1007/s10619-023-07424-2

Learning analytics data from collaborative SQL exercises using the SQLValidator.

Broneske, D., Obionwu, V., Berndt, S., & Hawlitschek, A. (2023).
Learning analytics data from collaborative SQL exercises using the SQLValidator. Magdeburg: Otto-von-Guericke-Universität.

Decision tree learning in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets.

Mondal, R., Dung Do, M., Ahmed, N. U., Walke, D., Micheel, D., ... & Heyer, R. (2023).
Decision tree learning in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets. In BMC Medical Informatics and Decision Making (Hrsg.), Selected articles from the 17th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2021). Heidelberg: BMC Part of Springer Nature. https://doi.org/10.1186/s12911-023-02112-8

Data streams: Investigating data structures for multivariate asynchronous time series prediction problems.

Vox, C., Broneske, D., Shaikat, I., & Saake, G. (2023).
Data streams: Investigating data structures for multivariate asynchronous time series prediction problems. In M. de Marsico, G. Sanniti di Baja, & A. Fred (Hrsg.), Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2023) (S. 686-696). Lissabon, Portugal: SCITEPRESS. https://doi.org/10.5220/0011737300003411

Semantic relatedness: A strategy for plagiarism detection in SQL assignments.

Obionwu, C. V., Kumar, R., Shantharam, S., Broneske, D., & Saake, G. (2023).
Semantic relatedness: A strategy for plagiarism detection in SQL assignments. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), 2023 6th World Conference on Computing and Communication Technologies (WCCCT) (S. 158-165). Chengdu, China: IEEE. https://doi.org/10.1109/WCCCT56755.2023.10052438

Towards a strategy for developing a project partner recommendation system for University course projects.

Obionwu, C. V., Singh Walia, D., Tiwari, T., Ghosh, T., Broneske, D., & Saake, G. (2023).
Towards a strategy for developing a project partner recommendation system for University course projects. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), 2023 6th World Conference on Computing and Communication Technologies (WCCCT) (S. 144-151). Chengdu, China: IEEE. https://doi.org/10.1109/WCCCT56755.2023.10052282

Second workshop on novel data management ideas on heterogeneous (co-)processors (NoDMC).

Broneske, D., & Habich, D. (2023).
Second workshop on novel data management ideas on heterogeneous (co-)processors (NoDMC). In B. König-Ries et al. (Hrsg.), Lecture Notes in Informatics (LNI) - Proceedings, Volume P-331. Bonn: Gesellschaft für Informatik e.V.. https://doi.org/10.18420/BTW2023-40

Microblogs-A means for simulating informal learning beyond classrooms.

Obionwu, V., Broneske, D., & Saake, G. (2023).
Microblogs-A means for simulating informal learning beyond classrooms. In Association for Computing Machinery ACM (Hrsg.), Proceedings of the 14th International Conference on Education Technology and Computers (ICETC '22) (S. 219-225). New York, USA: ACM. https://doi.org/10.1145/3572549.3572585

Automated occupation coding with hierarchical features: A data-centric approach to classification with pre-trained language models.

Safikhani, P., Avetisyan, H., Föste-Eggers, D., & Broneske, D. (2023).
Automated occupation coding with hierarchical features: A data-centric approach to classification with pre-trained language models. Discover Artificial Intelligence 3, 2023(6). https://doi.org/10.1007/s44163-023-00050-y

An intervention strategy for mitigating the prevalence of syntax errors during task exercise engagements.

Obionwu, V., Harnisch, C., Kalu, K., Broneske, D., & Saake, G. (2023).
An intervention strategy for mitigating the prevalence of syntax errors during task exercise engagements. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), 2022 International Conference on Engineering and Emerging Technologies (ICEET) (S. 1-6). New York, United States: IEEE. https://doi.org/10.1109/ICEET56468.2022.10007096

Exploiting views for collaborative research data management of structured data.

Broneske, D., Wolff, I., Köppen, V., & Schäler, M. (2022).
Exploiting views for collaborative research data management of structured data. In Y.-H. Tseng, M. Katsurai, & H. N. Nguyen (Hrsg.), ICADL 2022: From born-physical to born-virtual: Augmenting intelligence in digital libraries. (S. 360-376). Cham: Springer (online first). https://doi.org/10.1007/978-3-031-21756-2_28

UCRP-miner: Mining patterns that matter.

Darrab, S., Broneske, D., & Saake, G. (2022).
UCRP-miner: Mining patterns that matter. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), Proceedings of the 5th International Conference on Data Science and Information Technology (DSIT) (S. 1-7). New York, United States: IEEE. https://doi.org/10.1109/DSIT55514.2022.9943880
Presentations

List of presentations & conferences

Unfortunately, there is no result available for this search combination

Die Debatte um das WissZeitVG auf twitter: #Ichbinhanna.

Broneske, D., Friedrich, C., Schwabe, U., & Schwemmer, C. (2022, Oktober).
Die Debatte um das WissZeitVG auf twitter: #Ichbinhanna. Impulsvortrag auf der Hausmesse Beschäftigungssituation in der Wissenschaft, DZHW Hannover, Hannover.

UCRP‐miner: Mining patterns that matter.

Darrab, S., Broneske, D., & Saake, G. (2022, Juli).
UCRP‐miner: Mining patterns that matter. Vortrag auf der Konferenz International Conference on Data Science and Information Technology (DSIT), Shanghai, China.

Topic maps as a tool for facilitating collaborative work pedagogy in knowledge management systems.

Obionwu, V., Broneske, D., & Saake, G. (2022, Juli).
Topic maps as a tool for facilitating collaborative work pedagogy in knowledge management systems. Vortrag auf der Konferenz International Conference on Knowledge and Education Technology (ICKET), London, Großbritannien.

Slide-recommendation system: A strategy for integrating instructional feedback into online exercise sessions.

Obionwu, V., Toulouse, V., Broneske, D., & Saake, G. (2022, Juli).
Slide-recommendation system: A strategy for integrating instructional feedback into online exercise sessions. Vortrag auf der Konferenz International Conference on Data Science, Technology and Applications (DATA), Lissabon, Portugal.

A collaborative learning environment using blogs in a learning management system.

Obionwu, V., Broneske, D., & Saake, G. (2022, Juni).
A collaborative learning environment using blogs in a learning management system. Vortrag auf der Konferenz EAI Conference on Computer Science and Education in Computer Science (CSECS), Sofia, Bulgarien.

Towards a learning analytics metadata model.

Wolff, I., Broneske, D., & Köppen, V. (2022, März).
Towards a learning analytics metadata model. Vortrag auf der Konferenz The 12th International Learning Analytics and Knowledge Conference, SoLAR Society for Learning Analytics Research.

Integer time series compression for holistic data analytics in the context of vehicle sensor data.

Vox, C., Broneske, D., Piewek, J., Sass, A. U., & Saake, G. (2022, März).
Integer time series compression for holistic data analytics in the context of vehicle sensor data. Vortrag auf der Konferenz 2022 International Conference on Connected Vehicle and Expo (ICCVE), IEEE Xplore Institute of Electrical and Electronics Engineers, Lakeland, FLorida, USA. https://doi.org/10.1109/ICCVE52871.2022.9743019

Automatisierte Codierung von Berufsangaben mittels BERT.

Föste-Eggers, D., Avetisyan, H., Safikhani, P., & Broneske, D. (2021, Dezember).
Automatisierte Codierung von Berufsangaben mittels BERT. Vortrag auf der Tagung Methodische Herausforderungen in der empirischen Bildungsforschung, Thementagung der digiGEBF21, DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation, Frankfurt am Main.

Integrating decision tree learning on the graph database Neo4j to analyze clinical data.

Mondal, R., Dung Do, M., Uddin Ahmed, N., Broneske, D., Saake, G., & Heyer, R. (2021, November).
Integrating decision tree learning on the graph database Neo4j to analyze clinical data. Vortrag auf der Konferenz International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2021).

Identifying and understanding game-framing in online news: BERT and fine-grained linguistic features.

Avetisyan, H., & Broneske, D. (2021, November).
Identifying and understanding game-framing in online news: BERT and fine-grained linguistic features. Vortrag auf der Konferenz The International Conference on Natural Language and Speech Processing (ICNLSP 2021), University of Trento, Italien.

Informationsgewinn durch Datenportale und dem Open Research Knowledge Graph.

Broneske, D. (2021, November).
Informationsgewinn durch Datenportale und dem Open Research Knowledge Graph. Vortrag im Rahmen der Berlin Science Week 2021, Berlin, Deutschland.

Informationsgewinn durch Datenportale und dem Open Research Knowledge Graph.

Broneske, D. (2021, November).
Informationsgewinn durch Datenportale und dem Open Research Knowledge Graph. Vortrag im Rahmen des November der Wissenschaft 2021, Initiative Wissenschaft Hannover.

FAIR research data management for learning analytics.

Wolff, I., Broneske, D., & Köppen, V. (2021, September).
FAIR research data management for learning analytics. Vortrag auf der Tagung 19. Fachtagung Bildungstechnologien der GI Fachgruppe Bildungstechnologien (DELFI), FH Dortmund und Fernuniversität Hagen, Dortmund, Deutschland.

Design considerations towards AI-driven co-processor accelerated database management.

Le, A. T., Campero Durand, G., Gurumurthy, B., Broneske, D., Steup, C., & Saake, G. (2021, September).
Design considerations towards AI-driven co-processor accelerated database management. Vortrag auf der Konferenz Lernen. Wissen. Daten. Analysen. - Learning. Knowledge. Data. Analytics. (LWDA 2021), MCML Munich Center for Machine Learning, München, Deutschland.

3D animation of single stage batch distillation for distance learning.

Vorhauer-Huget, N., Mathew, P., Gunasekaran, H., Dung Do, M., Thalakkotoor Jojo, S., ... & Broneske, D. (2021, Juli).
3D animation of single stage batch distillation for distance learning. Vortrag auf der Konferenz International Conference on Education and New Learning Technologies, Valencia, Spanien.
Curriculum Vitae
Since 03/2021

Acting Head of Department 4 "Infrastructures and Methods" of the German Centre for Higher Education Research and Science Studies (DZHW)

04/2020 - 02/2021

Post-Doc at Otto-von-Guericke University Magdeburg

10/2019 - 03/2020

Substitutional Professor at Hochschule Anhalt - Chair of Database and Information Systems

06/2019 - 09/2019

Post-Doc at Otto-von-Guericke University Magdeburg

08/2013 - 05/2019

PhD Student at Otto-von-Guericke University Magdeburg

2008 - 2013

Bachelor and Master Studies in "Computer Science", Otto-von-Guericke University Magdeburg

Read more Read less