Publikationen
199 Übereinstimmungen gefunden / 1-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 151-165 166-180 181-195 196-199
Workshopdokumentation: Langzeitarchivierung (LZA) in Forschungsdatenzentren (FDZ).Hoffstätter, U., & Beck, K. (2024).Workshopdokumentation: Langzeitarchivierung (LZA) in Forschungsdatenzentren (FDZ). KonsortSWD Working Paper Nr. 8/2024. Konsortium für die Sozial-, Verhaltens-, Bildungs- und Wirtschaftswissenschaften (KonsortSWD). Hannover: DZHW. https://doi.org/10.5281/zenodo.10261654 |
Framing and BERTology: A data-centric approach to integration of linguistic features into transformer-based pre-trained language models.Avetisyan, H., Safikhani, P., & Broneske, D. (2024).Framing and BERTology: A data-centric approach to integration of linguistic features into transformer-based pre-trained language models. In Arai, K. (Hrsg.), Intelligent Systems and Applications (S. 81-90). Cham: Springer. https://doi.org/10.1007/978-3-031-47718-8 |
Stamp—Standardized data management plan for educational research: A blueprint to improve data management across disciplines.Netscher, S., Bongartz, E. C., Schwickerath, A. K., Braun, D., Stephan, K., & Mauer, R. (2024).Stamp—Standardized data management plan for educational research: A blueprint to improve data management across disciplines. Data Science Journal, 23(1). https://doi.org/10.5334/dsj-2024-007 |
Examining final comment questions with requests for written and oral answers.Höhne, J. K., & Claaßen, J. (2024).Examining final comment questions with requests for written and oral answers. International Journal of Market Research (online first). https://doi.org/10.1177/14707853241229329 |
More or less the same? An exploration of the evolution of the PhD wage premium in a decade of higher education expansion.Euler, T., & Trennt, F. (2024).More or less the same? An exploration of the evolution of the PhD wage premium in a decade of higher education expansion. Soziale Welt - Special Edition 26, 55-88. https://doi.org/10.5771/9783748925590-55 |
Clustering graph data: the roadmap to spectral techniques.Mondal, R., Ignatova, E., Walke, D., Broneske, D., Saake, G., & Heyer, R. (2024).Clustering graph data: the roadmap to spectral techniques. Discover Artificial Intelligence, 4(7), 1-22. https://doi.org/10.1007/s44163-024-00102-x Abstract
Graph data models enable efficient storage, visualization, and analysis of highly interlinked data, by providing the benefits of horizontal scalability and high query performance. Clustering techniques, such as K-means, hierarchical clustering, are highly beneficial tools in data mining and machine learning to find meaningful similarities and differences between data points. Recent developments in graph data models, as well as clustering algorithms for graph data, have shown promising results in image segmentation, gene data analysis, etc. This has been primarily achieved through research and development of algorithms in the field of spectral theory, [...] Full abstract: https://doi.org/10.1007/s44163-024-00102-x |
Mustervertrag Datenaufnahme KonsortSWD (Version 2.0.0).Schallaböck, J., Kreutzer, T., Hoffstätter, U., & Buck, D. (2023).Mustervertrag Datenaufnahme KonsortSWD (Version 2.0.0). Hannover: DZHW. https://doi.org/10.5281/zenodo.10406480 |
Mustervertrag Datennutzung KonsortSWD (Version 3.0.0).Schallaböck, J., Hoffstätter, U., Buck, D., & Linne, M. (2023).Mustervertrag Datennutzung KonsortSWD (Version 3.0.0). Hannover: DZHW. https://doi.org/10.5281/zenodo.10409864 |
Anomaly detection algorithms: Comparative analysis and explainability perspectives.Darab, S., Allipilli, H., Ghani, S., Changaramkulath, H., Koneru, S., Broneske, D., & Saake, G. (2023).Anomaly detection algorithms: Comparative analysis and explainability perspectives. In D. Benavides-Prado et al. (Hrsg.), Data Science and Machine Learning, 21st Australasian Conference, AusDM 2023, Auckland, New Zealand, December 11–13, 2023, Proceedings (S. 90-104). Singapore: Springer Nature. |
The sound of respondents: predicting respondents’ level of interest in questions with voice data in smartphone surveys.Höhne, J. K., Kern, C., Gavras, K., & Schlosser, S. (2023).The sound of respondents: predicting respondents’ level of interest in questions with voice data in smartphone surveys. Quality & Quantity, International Journal of Methodology, 57(6). https://doi.org/10.1007/s11135-023-01776-8 Abstract
Web surveys completed on smartphones open novel ways for measuring respondents’ attitudes, behaviors, and beliefs that are crucial for social science research and many adjacent research fields. In this study, we make use of the built-in microphones of smartphones to record voice answers in a smartphone survey and extract non-verbal cues, such as amplitudes and pitches, from the collected voice data. This allows us to predict respondents’ level of interest (i.e., disinterest, neutral, and high interest) based on their voice answers, which expands the opportunities for researching respondents’ engagement and answer behavior. [...] Full abstract: https://doi.org/10.1007/s11135-023-01776-8 |
WISHFUL - Website extraction of Institutional Sources with Heterogeneous Factors and User-Driven Linkage.Shahania, S., Spiliopoulou, M., & Broneske, D. (2023).WISHFUL - Website extraction of Institutional Sources with Heterogeneous Factors and User-Driven Linkage. In Delir Haghighi, P. et al. (Hrsg.), Information Integration and Web Intelligence (iiWAS 2023) (S. 20-26). Cham: Springer. https://doi.org/10.1007/978-3-031-48316-5_3 Abstract
Extracting information from diverse websites is increasingly important, especially for analyzing vast data sets to detect trends, gain insights. By studying job ads, researchers can monitor employer demand shifts, assisting policymakers in aiding affected workers and industries. However, extraction faces challenges like varied website formats, dynamic content, and duplicate data. This study introduces a method for extracting data from diverse private university websites involving keyword identification, website categorization, and extraction pipelines. |
Does the higher education experience affect political interest, efficacy, and participation? Comparing dropouts to graduates and ‘non-starters’.Mishra, S., Klein, D., & Müller, L. (2023).Does the higher education experience affect political interest, efficacy, and participation? Comparing dropouts to graduates and ‘non-starters’. European Journal of Higher Education. https://doi.org/10.1080/21568235.2023.2276853 |
Large language models and low-resource languages: An examination of Armenian NLP.Avetisyan, H., & Broneske, D. (2023).Large language models and low-resource languages: An examination of Armenian NLP. Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings), 2023, 199-210. |
Pragmatische Tools oder kreativer Umgang? Qualitative Methoden in der anwendungsorientierten Hochschulforschung.Behrmann, L., İkiz-Akıncı, D., & Rückamp, V. (2023).Pragmatische Tools oder kreativer Umgang? Qualitative Methoden in der anwendungsorientierten Hochschulforschung. Forum Qualitative Sozialforschung 24(3). www.qualitative-research.net, https://doi.org/10.17169/fqs-24.3.3968 (Abgerufen am: 26.09.2023) (online first). https://doi.org/10.17169/fqs-24.3.3968 |
Kontakt

