Otmane Azeroual arbeitet seit Dezember 2016 als wissenschaftlicher Mitarbeiter am DZHW. Nach seinem Studium der Wirtschaftsinformatik an der Hochschule für Technik und Wirtschaft Berlin (HTW) schloss er seine Promotion zum Thema „Untersuchungen zur Datenqualität und Nutzerakzeptanz von Forschungsinformationssystemen“ in Ingenieurinformatik am Institut für Technische und Betriebliche Informationssysteme (ITI), Arbeitsgruppe Datenbanken & Software Engineering der Otto-von-Guericke Universität Magdeburg und an der Hochschule für Technik und Wirtschaft Berlin (HTW) im Fachbereich Ingenieurwissenschaften.

Dr. Otmane Azeroual
Abteilung Forschungssystem und Wissenschaftsdynamik
wissenschaftlicher Mitarbeiter
- 030 2064177-38
- 030 2064177-99
Wissenschaftliche Forschungsgebiete
Database Systems, Information Systems, Data Quality Management, Business Intelligence, Big Data, Open Data, Bibliometrics, Cloud Computing, IT-Security, Industry 4.0
Projekte
Liste der Projekte
Publikationen
Liste der Publikationen
Transparency of open data ecosystems in smart cities: Definition and assessment of the maturity of transparency in 22 smart cities.Lnenicka, M., Nikiforova, A., Luterek, M., Azeroual, O., Ukpabi, D., Valtenbergs, V., & Machova, R. (2022).Transparency of open data ecosystems in smart cities: Definition and assessment of the maturity of transparency in 22 smart cities. Sustainable Cities and Society, 2022(82), 103906. https://doi.org/10.1016/j.scs.2022.103906 |
A Record Linkage-Based Data Deduplication Framework with DataCleaner Extension.Azeroual, Jha , M., Nikiforova , A., Sha , K., Alsmirat , M., & Jha , S. (2022).A Record Linkage-Based Data Deduplication Framework with DataCleaner Extension. Multimodal Technologies and Interaction, 2022(6), 27. https://doi.org/10.3390/mti6040027 |
RecSys Pertaining to Research Information with Collaborative Filtering Methods: Characteristics and Challenges.Azeroual, O., & Koltay, T. (2022).RecSys Pertaining to Research Information with Collaborative Filtering Methods: Characteristics and Challenges. MDPI Publications, 2022(10), 17. https://doi.org/10.3390/publications10020017 |
Proof of concept to secure the quality of research data.Azeroual, O. (2022).Proof of concept to secure the quality of research data. In Osten, W. (Hrsg.), Fourteenth International Conference on Machine Vision (ICMV 2021), 1208402 (5 March 2022). Rome, Italy: SPIE Digital Library. https://doi.org/10.1117/12.2622432 |
Apache Spark and MLlib-Based Intrusion Detection System or How the Big Data Technologies Can Secure the Data.Azeroual, O., & Nikiforova, A. (2022).Apache Spark and MLlib-Based Intrusion Detection System or How the Big Data Technologies Can Secure the Data. Information, 13(2), 58. https://doi.org/10.3390/info13020058 |
Untersuchungen zur Datenqualität und Nutzerakzeptanz von Forschungsinformationssystemen.Azeroual, O. (2022).Untersuchungen zur Datenqualität und Nutzerakzeptanz von Forschungsinformationssystemen. Framework zur Überwachung und Verbesserung der Qualität von Forschungsinformationen. Wiesbaden: Springer Vieweg. https://doi.org/10.1007/978-3-658-36702-2 |
Trustworthy or not? Research data on COVID-19 in data repositories.Azeroual, O., & Schöpfel, J. (2021).Trustworthy or not? Research data on COVID-19 in data repositories. In D. Baker & L. Ellis (Hrsg.), Libraries, Digital Information, and COVID: Practical Applications and Approaches to Challenge and Change (S. 169-182). Cambridge, Kidlington: Chandos Publishing. https://doi.org/10.1016/B978-0-323-88493-8.00027-6 |
Datenqualität und -kuratierung als Voraussetzung für Open Research Data.Azeroual, O. (2021).Datenqualität und -kuratierung als Voraussetzung für Open Research Data. Information - Wissenschaft & Praxis, 2021(72), 204-211. https://doi.org/10.1515/iwp-2021-2158 |
Rewarding Research Data Management.Schöpfel, J., & Azeroual, O. (2021).Rewarding Research Data Management. In Manghi, P. et al. (Hrsg.), Proceedings of Sci-K 2021: 1st International Workshop on Scientific Knowledge Representation, Discovery, and Assessment, Apr 19 –23, 2021. Ljubljana, Slovenia: ACM, New York, NY, USA. https://doi.org/10.1145/3442442.3451367 |
Data Quality Strategy Selection in CRIS: Using a Hybrid Method of SWOT and BWM.Azeroual, O., Ershadi, M. J., Azizi, A., Banihashemi, M., & Abadi, R. E. (2021).Data Quality Strategy Selection in CRIS: Using a Hybrid Method of SWOT and BWM. Informatica - An International Journal of Computing and Informatics, 2021(45), 65-80. https://doi.org/10.31449/inf.v45i1.2995 |
Processing Big Data with Apache Hadoop in the Current Challenging Era of COVID-19.Azeroual, O., & Fabre, R. (2021).Processing Big Data with Apache Hadoop in the Current Challenging Era of COVID-19. Big Data and Cognitive Computing, 2021(5), 12. https://doi.org/10.3390/bdcc5010012 |
Künstliche Intelligenz als fundierte Entscheidungshilfe in Datenbanken wie CRIS.Azeroual, O. (2021).Künstliche Intelligenz als fundierte Entscheidungshilfe in Datenbanken wie CRIS. Information - Wissenschaft & Praxis (online first). https://doi.org/10.1515/iwp-2020-2130 |
Evaluating Scientific Impact of Research Infrastructures: The Role of Current Research Information Systems.Fabre, R., Egret, D., Schöpfel, J., & Azeroual, O. (2021).Evaluating Scientific Impact of Research Infrastructures: The Role of Current Research Information Systems. Quantitative Science Studies (online first). https://doi.org/10.1162/qss_a_00111 |
Current research information systems and institutional repositories: From data ingestion to convergence and merger.Schöpfel, J., & Azeroual, O. (2020).Current research information systems and institutional repositories: From data ingestion to convergence and merger. In Baker, D., & Ellis, L. (Hrsg.), Future Directions in Digital Information, 1st Edition: Predictions, Practice, Participation, 11/2020, (S. 19-37). Sawston, Cambridge: Chandos Publishing. https://doi.org/10.1016/B978-0-12-822144-0.00002-1 |
Vorträge & Tagungen
Liste der Vorträge & Tagungen
10 Übereinstimmungen gefunden /