Publications
206 Übereinstimmungen gefunden / 1-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 151-165 166-180 181-195 196-206
Die Studierendenbefragung in Deutschland 2021. Daten- und Methodenbericht zur Erhebung.
Die Studierendenbefragung in Deutschland 2021. Daten- und Methodenbericht zur Erhebung. Hannover: DZHW. Abstract
"The Student Survey in Germany" (2021) is a newly designed study that integrates three previously separate student surveys (Beuße et al., 2022): the Social Survey (Middendorff et al., 2017; Middendorff & Wallis, 2023), the Student Survey (Multrus et al., 2017; Multrus, 2021) and the survey "best - Studying with impairments" (Poskowsky et al., 2018; Unger et al., 2012). The study is designed as a cross-sectional survey with a long-term character. The new, integrated student survey thus continues the long tradition of the Social Survey and the Student Survey as important cross-sectional long-term observation studies for describing and analysing higher education and the student [...] Full Abstract: https://doi.org/10.21249/DZHW:sid2021:1.0.0 |
A case study on the development of the German Corona-Warn-App.Fawaz Enaya, M., Klingbeil, T., Krüger, J., Broneske, D., Feinbube, F., & Saake, G. (2024).A case study on the development of the German Corona-Warn-App. Journal of Systems and Software. https://doi.org/10.1016/j.jss.2024.112020 |
VORAUS: Etablierte Formate der Qualitätssicherung weiterentwickeln: Auf welche VORbehalte und Einverständnisse trifft eine teil-randomisierte AUSwahl von Forschungsprojekten im wissenschaftlichen Feld?Johannsen, J., Philipps, A., Barlösius, E., & İkiz-Akıncı, D. (2024).VORAUS: Etablierte Formate der Qualitätssicherung weiterentwickeln: Auf welche VORbehalte und Einverständnisse trifft eine teil-randomisierte AUSwahl von Forschungsprojekten im wissenschaftlichen Feld? Daten- und Methodenbericht zum Datenpaket der qualitativen Teilstudie des Projekts VORAUS. Hannover: DZHW. https://doi.org/10.21249/DZHW:vorausquali:1.0.0 Abstract
he project "VORAUS: Further developing established quality assurance formats: Which VORreservations and consensuses does a partially randomised SELECTION of research projects encounter in the scientific field?" was funded by the BMBF from April 2019 to March 2022. The study investigated reservations and consensus in the scientific field regarding partial randomisation. On this basis, it was clarified what is currently considered appropriate in science. Prior to a quantitative survey on the topic, the data from which is also available as a data package (DOI: https://doi.org/10.21249/DZHW:vorausquanti:1.0.0), problem-centred interviews were conducted with [...] Full Abstract: https://doi.org/10.21249/DZHW:vorausquali:1.0.0 |
Knowledge distillation for quantized vehicle sensor data.Vox, C., Niemann, O., Broneske, D., Piewek, J., Sass, A. U., & Saake, G. (2024).Knowledge distillation for quantized vehicle sensor data. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), 2023 International Conference on Machine Learning and Applications (ICMLA) (S. 908-915). Jacksonville, Florida, USA: IEEE. https://doi.org/10.1109/ICMLA58977.2023.00134 |
A domain specific students' assistance system for the provision of instructional feedback.Obionwu, C. V., Tiwari, T., Chovatta Valappil, B. B., Raikar, N., Walia, D. S., ... & Saake, G. (2024).A domain specific students' assistance system for the provision of instructional feedback. In IEEE Institute of Electrical and Electronic Engineers (Hrsg.), 2023 International Conference on Machine Learning and Applications (ICMLA) (S. 2065-2070). Jacksonville, Florida, USA: IEEE. https://doi.org/10.1109/ICMLA58977.2023.00312 |
Enforcing right to be forgotten in cloud-based data lakes.Bhardwaj, P., Darrab, S., Broneske, D., Klose, I., & Saake, G. (2024).Enforcing right to be forgotten in cloud-based data lakes. In Arai, K. (Hrsg.), Advances in Information and Communication (FICC 2024) (S. 220-234). Cham: Springer. https://doi.org/10.1007/978-3-031-53963-3_16 |
An evolutionary algorithm with heuristic operator for detecting protein complexes in protein interaction networks with negative controls.Abbas, M. N., Attea, B. A., Broneske, D., & Saake, G. (2024).An evolutionary algorithm with heuristic operator for detecting protein complexes in protein interaction networks with negative controls. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3367746 Abstract
Computational biology research faces a formidable challenge in the detection of complexes within protein-protein interaction (PPI) networks, critical for unraveling cellular processes, predicting functions of uncharacterized proteins, and diagnosing diseases. While evolutionary algorithms (EAs), particularly state-of-the-art methods, often partition PPI networks based on graph properties or biological semantics, their resilience to noisy or missing interactions remains an underexplored territory. In this paper, we propose a groundbreaking heuristic operator, termed "strong neighbor-node migration", specifically designed to elevate solution quality [...] Full Abstract: https://ieeexplore.ieee.org/document/10440281 |
Workshopdokumentation: Langzeitarchivierung (LZA) in Forschungsdatenzentren (FDZ).Hoffstätter, U., & Beck, K. (2024).Workshopdokumentation: Langzeitarchivierung (LZA) in Forschungsdatenzentren (FDZ). KonsortSWD Working Paper Nr. 8/2024. Konsortium für die Sozial-, Verhaltens-, Bildungs- und Wirtschaftswissenschaften (KonsortSWD). Hannover: DZHW. https://doi.org/10.5281/zenodo.10261654 |
Framing and BERTology: A data-centric approach to integration of linguistic features into transformer-based pre-trained language models.Avetisyan, H., Safikhani, P., & Broneske, D. (2024).Framing and BERTology: A data-centric approach to integration of linguistic features into transformer-based pre-trained language models. In Arai, K. (Hrsg.), Intelligent Systems and Applications (S. 81-90). Cham: Springer. https://doi.org/10.1007/978-3-031-47718-8 |
Stamp—Standardized data management plan for educational research: A blueprint to improve data management across disciplines.Netscher, S., Bongartz, E. C., Schwickerath, A. K., Braun, D., Stephan, K., & Mauer, R. (2024).Stamp—Standardized data management plan for educational research: A blueprint to improve data management across disciplines. Data Science Journal, 23(1). https://doi.org/10.5334/dsj-2024-007 |
Examining final comment questions with requests for written and oral answers.Höhne, J. K., & Claaßen, J. (2024).Examining final comment questions with requests for written and oral answers. International Journal of Market Research (online first). https://doi.org/10.1177/14707853241229329 |
More or less the same? An exploration of the evolution of the PhD wage premium in a decade of higher education expansion.Euler, T., & Trennt, F. (2024).More or less the same? An exploration of the evolution of the PhD wage premium in a decade of higher education expansion. Soziale Welt - Special Edition 26, 55-88. https://doi.org/10.5771/9783748925590-55 |
Clustering graph data: the roadmap to spectral techniques.Mondal, R., Ignatova, E., Walke, D., Broneske, D., Saake, G., & Heyer, R. (2024).Clustering graph data: the roadmap to spectral techniques. Discover Artificial Intelligence, 4(7), 1-22. https://doi.org/10.1007/s44163-024-00102-x Abstract
Graph data models enable efficient storage, visualization, and analysis of highly interlinked data, by providing the benefits of horizontal scalability and high query performance. Clustering techniques, such as K-means, hierarchical clustering, are highly beneficial tools in data mining and machine learning to find meaningful similarities and differences between data points. Recent developments in graph data models, as well as clustering algorithms for graph data, have shown promising results in image segmentation, gene data analysis, etc. This has been primarily achieved through research and development of algorithms in the field of spectral theory, [...] Full abstract: https://doi.org/10.1007/s44163-024-00102-x |
Mustervertrag Datenaufnahme KonsortSWD (Version 2.0.0).Schallaböck, J., Kreutzer, T., Hoffstätter, U., & Buck, D. (2023).Mustervertrag Datenaufnahme KonsortSWD (Version 2.0.0). Hannover: DZHW. https://doi.org/10.5281/zenodo.10406480 |
Contact

